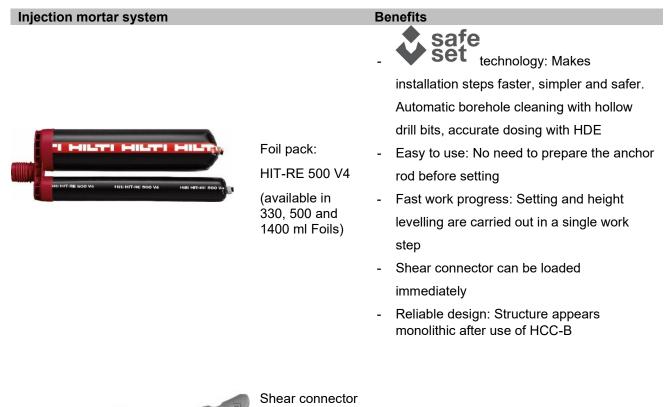
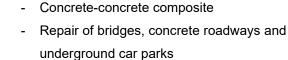


Shear connector HCC-B with HIT-RE 500 V4 Injection mortar


Product Technical Datasheet Concrete-to-concrete Update: Feb 25



Shear connector HCC-B with HIT-RE 500 V4 injection mortar

for shear-friction applications and overlay design (EOTA TR 066)

HCC-B (d=14mm)

Renovation: reinforcement and repair of bridges, tunnels and high-rise buildings

Application

- Increasing the payloads of bridges

Base material

Concrete

(uncracked)

Hammer

drilled holes

Concrete

(cracked)

۹ 🖇

Diamond

drilled holes

Load conditions

Fatigue

Static/ quasi-static

Other information

PROFIS Engineering Software

Concrete to concrete Handbook

Linked Approvals/Certificates and Instructions for use

6

Hollow Drill

Bit drilled

holes

Approvals / Certificates

Drilling, cleaning, setting

Approval no.	Application / loading condition	Authority / Laboratory	Date of issue
ETA-18/1022	Static and quasi-static / Fatigue	DIBt, Berlin	05-05-2023

The instructions for use can be viewed using the link in the instructions for use table or the QR code/link in the Hilti webpage table

Instructions for use(IFU)

Material				
Injection mortar	IFU Hilti HIT-RE 500 V4 (330/500 ml)			<u>IFU Hilti HIT-RE 500 V4 (1400 ml)</u>
Dispenser	IFU HDM	IFU HDE 500-22	IFU HDE 500-A12	IFU HIT-P8000D
Shear Connector	IFU HCC-B			

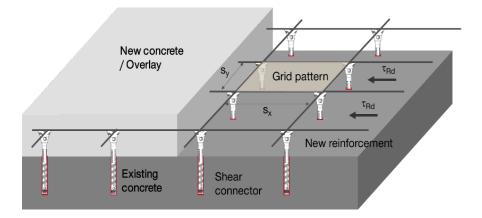
Link to Hilti Webpage

Injection mortars / Dispenser						
Hilti HIT-RE 500 V4	HDE 500-22	HDE 500-A12	<u>HDM 500</u>	<u>Hilti HIT-P8000D</u>		
■新■ 森2055 ■558						
Fastener: Shear conn	lector					
HCC-B						
Factor on an addated allow						

Fastener special dimensions

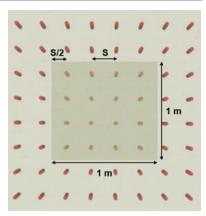
Mechanical properties and dimensions HCC-B

Mechanical properties and dimensions of the HCC-B are standardized and can be taken from the ETA listed in the table Approvals / Certificates or Instructions for use (IFU) section.



Static and quasi-static loading based on ETA-18/1022 and design according to TR-066

All data in this section applies to:


- Correct setting (see setting instruction)
- Hammer drilled holes, hammer drilled holes with Hilti hollow drill bit (TE-CD, TE-YD)
- Below calculated values based on 1 m² grid pattern of connectors given in the table below, No edge influence is consider in design
- Minimum base material thickness (see setting details)
- Cracked concrete
- Embedment depth in existing concrete, h_{nom,ex} = 90 mm
- Embedment depth in new concrete, h_{nom,ov} = 85 mm
- Design values of the bond strength for a working life of 50 Years
- The following data are valid for a ψ_{sus} = 1,0
- The new concrete / overlay must exhibit a higher strength
- Roughness levels as defined in EOTA TR 066
- The design with shear connectors follows equation (2.11) of EOTA TR 066
- No design shear stress given in cases where minimum reinforcement ratio is not met
- The concrete strength class given in the following tables refer to the existing concrete member.
- In-service temperature range I (min. base mat. temp. -40°C, max. long/short term base mat. temp.: +24°C/40°C)
- The design with "no connectors" follows equation (2.9) of EOTA TR 066 (Note: Provide minimum reinforcement)

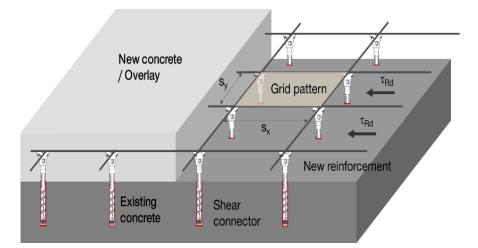
For specific design cases refer to PROFIS Engineering.

Figure showing grid pattern and shear stress in overlay application with HCC-B

Design resistance for very rough interface ($R_t \ge 3,0$ mm)							
Grid pattern of connectors, s _x x s _y [mm x mm]		No connectors	350 x 350	300 x 300	200 x 200	100 x 100	
No. of connectors per sq.m ² Reinforcement ratio		0 0,0%	9 0,09%	16 0,12%	25 0,27%	100 1,10%	
Existing concrete: C20/25 New concrete: C25/30			0,43	0,67	0,77	0,83	1,43
Existing concrete: C30/37 New concrete: C40/50	$ au_{Rd}$	[N/mm ²]	0,57	-	0,90	0,97	1,71
Existing concrete: C45/55 New concrete: C50/60			0,77	-	1,06	1,16	2,08

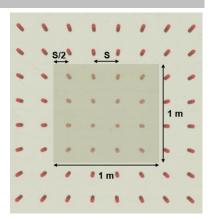
Design resistance for rough interface (1,5 mm \leq R _t < 3,0 mm)							
Grid pattern of connectors, s _x x s _y [mm x mm]		no connectors	350 x 350	300 x 300	200 x 200	100 x 100	
No. of connectors per sq.m ² Reinforcement ratio		0 0,0%	9 0,09%	16 0,12%	25 0,27%	100 1,10%	
Existing concrete: C20/25				•			
New concrete: C25/30			0,34	0,39	0,49	0,55	1,15
Existing concrete: C30/37 New concrete: C40/50	$ au_{Rd}$	[N/mm ²]	0,45	-	0,57	0,65	1,39
Existing concrete: C45/55 New concrete: C50/60			0,61	-	0,66	0,76	1,68

Design resistance for smooth interface (Rt < 1,5 mm)							
Grid pattern of connectors, s _x x s _y [mm x mm]		no connectors	350 x 350	300 x 300	200 x 200	100 x 100	
No. of connectors per sq.m ² Reinforcement ratio		0 0,0%	9 0,09%	16 0,12%	25 0,27%	100 1,10%	
Existing concrete: C20/25 New concrete: C25/30		0,17	0,13	0,23	0,31	1,05	
Existing concrete: C30/37 New concrete: C40/50	τ _{Rd} [N/mm²]	0,23	-	0,28	0,38	1,28	
Existing concrete: C45/55 New concrete: C50/60		0,31	-	0,33	0,46	1.57	



Fatigue loading based on ETA-18/1022. Design according to TR 066

All data in this section applies to:


- Correct setting (see setting instruction)
- Hammer drilled holes, hammer drilled holes with Hilti hollow drill bit (TE-CD, TE-YD)
- Below calculated values based on 1 m² grid pattern of connectors given in the table below, No edge influence is consider in design
- Minimum base material thickness (see setting details)
- Cracked concrete
- Embedment depth in existing concrete, h_{nom,ex} = 90 mm
- Embedment depth in new concrete, h_{nom,ov} = 85 mm
- Design values of the bond strength for a working life of 50 Years
- The following data are valid for a ψ_{sus} = 1,0
- The new concrete / overlay must exhibit a higher strength
- Roughness levels as defined in EOTA TR 066
- The design with shear connectors follows equation (2.11) of EOTA TR 066
- The design with "no connectors" follows equation (2.9) of EOTA TR 066 (Note: Provide minimum reinforcement)
- No design shear stress given in cases where minimum reinforcement ratio is not met
- In-service temperature range I (min. base mat. temp. -40°C, max. long/short term base mat. temp.: +24°C/40°C)
- The concrete strength class given in the following tables refer to the existing concrete member.
- Given data below are valid for pulsating fatigue action, without considering static loads.

For specific design cases refer to **PROFIS Engineering**.

Figure showing grid pattern and shear stress in overlay application with HCC-B

Design resistance for very rough interface (Rt ≥ 3,0 mm)							
Grid pattern of connectors, s _x x s _y [mm x mm]		no connectors	350 x 350	300 x 300	200 x 200	100 x 100	
No. of connectors per sq.m ² Reinforcement ratio		0 0,0%	9 0,09%	16 0,12%	25 0,27%	100 1,10%	
Existing concrete: C20/25 New concrete: C25/30			0,17	0,27	0,31	0,33	0,57
Existing concrete: C30/37 New concrete: C40/50	τ_{Rd}	[N/mm ²]	0,23	-	0,36	0,39	0,68
Existing concrete: C45/55 New concrete: C50/60			0,31	-	0,42	0,47	0,83

Setting information

Installation temperature range

-5°C to +40°C

Service temperature range

Hilti HIT-RE 500 V4 injection mortar with HCC-B may be applied in the temperature ranges given below. An elevated base material temperature may lead to a reduction of the design bond resistance.

For use with HIT-RE 500 V4

Temperature range	Base material temperature	Maximum long-term base material temperature	Maximum short-term base material temperature
Temperature range I	-40 °C to +40 °C	+24 °C	+40 °C
Temperature range II	-40 °C to +55 °C	+43 °C	+55 °C
Temperature range III	-40 °C to +75 °C	+55 °C	+75 °C

Maximum short term base material temperature

Short-term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

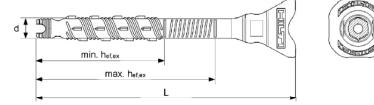
Maximum long term base material temperature

Long-term elevated base material temperatures are roughly constant over significant periods of time.

Working time and curing time¹⁾

Temperature of the base material at installation	Maximum working time	Minimum curing time
T ¹⁾	t _{work}	t _{cure} ²⁾
0 °C to 4 °C	2 h	48 h
> 4 °C to 9 °C	2 h	24 h
> 9 °C to 14 °C	1,5 h	16 h
> 14 °C to 19 °C	1 h	16 h
> 19 °C to 24 °C	30 min	7 h
> 24 °C to 29 °C	20 min	6 h
> 29 °C to 34 °C	15 min	5 h
> 34 °C to 39 °C	12 min	4,5 h
> 39 °C to 40 °C	`10 min	4 h

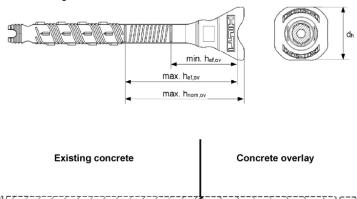
¹⁾ The minimum temperature of the foil pack is $+5^{\circ}$ C.

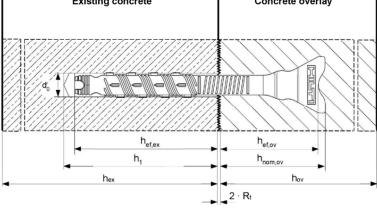

²⁾ The curing time data are valid for dry base material only. In wet base material, the curing times must be doubled.

Setting details for Hilti HCC-B in existing concrete Connector Hilti HCC-B

Connector Hilti HCC-B			
Outer diameter of shaft	d	[mm]	14
Overall length	L	[mm]	180
Effective embedment length	min h _{ef,ex}	[mm]	90
	max h _{ef,ex}		$125 - 2 \cdot R_t^{-1}$
Drill hole depth	h1	[mm]	h _{ef,ex} + 5 mm
Nominal diameter of drill bit	d ₀	[mm]	16
Minimum thickness of existing concrete	h _{min,ex} ≥	[mm]	h₁ + 2·d₀
Minimum spacing	s _{min,ex} ≥	[mm]	75
Minimum edge distance	C _{min,ex} ≥	[mm]	50

¹⁾ R_t: Roughness according to EOTA TR 066:2019-10.




Setting details for Hilti HCC-B in new concrete / overlay

Connector Hilti HCC-B			
Diameter of the head	dh	[mm]	40,6
Effective embedment length	min h _{ef,ov}	[mm]	50
Effective embedment length	max h _{ef,ov}		$85 - 2 \cdot R_t^{(1)}$
Overall embedment depth	h₁	[mm]	h _{ef,ov} + 5 mm
Minimum thickness of overlay	h _{min,ov} ≥	[mm]	h _{nom,ov} + 2·c _{nom} ²⁾
Minimum spacing	S _{min,ov} ≥	[mm]	85
Minimum edge distance	C _{min,ov} ≥	[mm]	25 + c _{nom} ²⁾

Rt: Roughness according to EOTA TR 066.
coop: Minimum concrete cover according to

c_{nom}: Minimum concrete cover according to EN 1992-1-1:2004+AC:2010.

Drilling and Installation equipment

For detailed setting information on installation see instructions for use (IFU) given with the product.

Rotary Hammers (Corded and Cordless)		TE 2 - TE 30
Diamond Coring Machines		DD EC-1, DD 100 DD 160
Dispenser		HDE HDM PE-8000D
		Blow out pump, Compressed air gun Set of cleaning brushes
Other tools		Hammer drill bit TE-CX, TE-C,
	·	Hollow drill bit TE-CD
		Diamond core bits
Setting		Machine setting HCC-M , HSD-M
		Hand setting HSD-G